Programming Nanopore Ion Flow for Encoded Multiplex MicroRNA Detection

نویسندگان

  • Xinyue Zhang
  • Yong Wang
  • Brandon L. Fricke
  • Li-Qun Gu
چکیده

Many efforts are being made in translating the nanopore into an ultrasensitive single-molecule platform for various genetic and epigenetic detections. However, compared with current approaches including PCR, the low throughput limits the nanopore applications in biological research and clinical settings, which usually requires simultaneous detection of multiple biomarkers for accurate disease diagnostics. Herein we report a barcode probe approach for multiple nucleic acid detection in one nanopore. Instead of directly identifying different targets in a nanopore, we designed a series of barcode probes to encode different targets. When the probe is bound with the target, the barcode group polyethylene glycol attached on the probe through click chemistry can specifically modulate nanopore ion flow. The resulting signature serves as a marker for the encoded target. Therefore counting different signatures in a current recording allows simultaneous analysis of multiple targets in one nanopore. The principle of this approach was verified by using a panel of cancer-derived microRNAs as the target, a type of biomarker for cancer detection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potentiometric sensing of nucleic acids using chemically modified nanopores.

Unlike the overwhelming majority of nanopore sensors that are based on the measurement of a transpore ionic current, here we introduce a potentiometric sensing scheme and demonstrate its application for the selective detection of nucleic acids. The sensing concept uses the charge inversion that occurs in the sensing zone of a nanopore upon binding of negatively charged microRNA strands to posit...

متن کامل

Antigen Detection via the Rate of Ion Current Rectification Change of the Antibody-Modified Glass Nanopore Membrane

Ion current rectification (ICR), defined as an increase in ion conduction at a given polarity and a decrease in ion conduction for the same voltage at the opposite polarity, i.e., a deviation from a linear ohmic response, occurs in conical shaped pores due to the voltage dependent solution conductivity within the aperture. The degree to which the ionic current rectifies is a function of the siz...

متن کامل

Interference-Free Detection of Genetic Biomarkers Using Synthetic Dipole-Facilitated Nanopore Dielectrophoresis.

The motion of polarizable particles in a nonuniform electric field (i.e., dielectrophoresis) has been extensively used for concentration, separation, sorting, and transport of biological particles from cancer cells and viruses to biomolecules such as DNAs and proteins. However, current approaches to dielectrophoretic manipulation are not sensitive enough to selectively target individual molecul...

متن کامل

Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients.

Ion transport through nanopores is an important process in nature and has important engineering applications. To date, most studies of nanopore ion transport have been carried out with electrolytes of relatively low concentrations. In this paper, we report on ionic current modulation from the translocation of dsDNA through a nanopore under high ionic strength and with an electrolyte concentrati...

متن کامل

Designing a polycationic probe for simultaneous enrichment and detection of microRNAs in a nanopore.

The nanopore sensor can detect cancer-derived nucleic acid biomarkers such as microRNAs (miRNAs), providing a noninvasive tool potentially useful in medical diagnostics. However, the nanopore-based detection of these biomarkers remains confounded by the presence of numerous other nucleic acid species found in biofluid extracts. Their nonspecific interactions with the nanopore inevitably contami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014